
Low-Thrust Many-Revolution Trajectory Optimization 

via Differential Dynamic Programming 

and a Sundman Transformation 

Jonathan Aziz, Jeffrey Parker, Daniel Scheeres
University of Colorado Boulder

Jacob Englander
NASA Goddard Space Flight Center

https://ntrs.nasa.gov/search.jsp?R=20170001472 2020-05-09T15:45:54+00:00Z



How many revolutions?
Planetary

• Long transfer durations with short 
orbital periods span many revolutions

Interplanetary

• Slow dynamics compared to control 
schedule
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Earth Escape Spiral Earth-Mars Rendezvous

Number of ‘revs’: 10s, 100s, 1000s < 1, 1-10, 10s



Historical Approaches

Indirect Control Laws Direct

optimal control theory, apply
Euler-Lagrange theorem and 
solve two point boundary 
value problem (TPBVP)

set a rule for spacecraft 
steering – a suboptimal 
policy that is acceptable by 
the mission designer

transcribe the trajectory 
optimization into a 
parameter optimization 
problem

Edelbaum
Alfano

Kéchichian

Kluever
Chang

Petropolous

Betts
Whiffen
Lantoine
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HDDP

• Hybrid Differential Dynamic Programming

• introduced by Lantoine and Russell

• sequence of control updates that minimize quadratic model of cost-to-go

• map derivatives along trajectory with state transition matrix and tensor
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• sequence of control updates that minimize quadratic model of cost-to-go

• map derivatives along trajectory with state transition matrix and tensor
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HDDP

• Hybrid Differential Dynamic Programming

• introduced by Lantoine and Russell

• sequence of control updates that minimize quadratic model of cost-to-go

• map derivatives along trajectory with state transition matrix and tensor
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HDDP

• Hybrid Differential Dynamic Programming

• introduced by Lantoine and Russell

• sequence of control updates that minimize quadratic model of cost-to-go

• map derivatives along trajectory with state transition matrix and tensor
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HDDP

• Hybrid Differential Dynamic Programming

• introduced by Lantoine and Russell

• sequence of control updates that minimize quadratic model of cost-to-go

• map derivatives along trajectory with state transition matrix and tensor

• Forward pass: evaluate ത𝑢 + 𝛿𝑢 in equations of motion

• Backward sweep: compute each 𝛿𝑢𝑘
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The Sundman Transformation

• Change independent variable from time to a function of orbital radius

𝑑𝑡 = 𝑐𝑛𝑟
𝑛𝑑𝜏

• Can choose 𝑛, 𝑐𝑛, so that 𝜏 is an orbit angle
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Eccentric Anomaly Mean Anomaly True Anomaly

𝑑𝑡 =
𝑎

𝜇
𝑟𝑑𝐸 𝑑𝑡 =

𝑎3

𝜇
𝑑𝑀 𝑑𝑡 =

𝑟2

ℎ
𝑑𝜈

• Equations of motion become 𝑥′ = ሶ𝑥𝑐𝑛𝑟
𝑛

• Discretize in 𝜏

• Specify 𝜏0, 𝜏𝑓, rather than 𝑡0, 𝑡𝑓

• i.e. specify number of revolutions

• Track time in the state vector

𝑥 =

𝑡
𝑥
𝑦
𝑧
⁞

, 𝑥′ =

1
ሶ𝑥
ሶ𝑦
ሶ𝑧
⁞

𝑐𝑛𝑟
𝑛



HDDP + Sundman

• Choose 𝜏 = 𝐸, the eccentric anomaly

• Minimum fuel GTO to GEO in 450.5 revs

• 2-body dynamics

• 135,150 variables

• 54 minutes 
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HDDP + Sundman

• Choose 𝜏 = 𝐸, the eccentric anomaly

• Minimum fuel GTO to GEO in 450.5 revs

• 2-body dynamics + 𝐽2

• 135,150 variables

• 61 minutes 
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HDDP + Sundman

• Choose 𝜏 = 𝐸, the eccentric anomaly

• Minimum fuel GTO to GEO in 450.5 revs

• 2-body dynamics + 𝐽2+ lunar gravity

• 135,150 variables

• 107 minutes 
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HDDP + Sundman

• Choose 𝜏 = 𝐸, the eccentric anomaly

• Minimum fuel GTO to GEO in 1000.5 revs

• 2-body dynamics + 𝐽2+ lunar gravity

• 300,150 variables

• 1359 minutes 
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Backup Slides
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500 rev orbit lowering at Mars

and with ΔΩ = 60∘
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Trust-Region Quadratic Subproblem

• Feedback control laws for 𝛿𝑢, 𝛿𝜆, 𝛿𝑤 are unconstrained

• Likely to step beyond validity of quadratic expansion

• Require invertible, positive definite Hessians (negative definite for 𝐽𝜆𝜆)

• Trust-region quadratic subproblem (TRQP):

• Acceptance of an iterate:
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